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1. Topics for this Module

1. An Idealistic Special Case � When � is Known.

2. Con�dence Interval Estimation
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(a) Parameter Spaces and Sample Spaces

(b) Partitioning the Parameter Space

(c) Partitioning the sample space

(d) Raw Score Rejection Rules

(e) Error Rates

i. Type I Error
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6. 1-tailed vs. 2-Tailed Tests
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2. An Idealistic Special Case � Statistical
Procedures When � is Known.

In this section, we will employ a distribution that is a standard �teaching
device�in a number of behavioral statistics texts � statistical procedures
related to the distribution of the sample mean X� when the population
standard deviation � is known. This situation is unrealistic, in the sense
that we are no more likely to know � than we are to know �. However,
it turns out that, to a surprising extent, it actually doesn�t matter much
that we don�t know �.
When the population distribution is normal, the distribution of the

sample mean is exactly normal, with mean �, and standard deviation
�X� = �=

p
N . The normality follows from the fact that the sample mean

is a linear combination of independent normal observations, and that any
linear combination of multivariate normal normal random variables is itself
normally distributed. The mean and standard deviation of the distribution
follow from linear combination theory.
When the population distribution is not normal, the distribution of the

sample mean will often still be very close to normal in shape, because of
the Central Limit Theorem we discussed previously.
We shall proceed, for a while, as if the distribution of the sample mean

can be assumed to be normal to a high degree of accuracy. We will now
examine two key topics: interval estimation and hypothesis testing.
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3. Con�dence Interval Estimation

Assume, for the time being, that we know that the distribution of X� over
repeated samples is as pictured below:

Figure 1: The Sampling Distribution of X�

This graph demonstrates the distribution of X� over repeated samples.
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In the above graph, as in any normal curve, 95% of the time a value will be
between Z-score equivalents of �1:96 and +1:96: These points are at a raw
score that is 1:96 standard deviations below the mean and 1:96 standard
deviations above the mean. Consequently, if we mark points on the graph
at � � 1:96�=

p
N and � + 1:96�=

p
N , we will have two points between

which X� will occur 95% of the time.
We can then say that

Pr

�
�� 1:96 �p

N
� X� � �+ 1:96

�p
N

�
= :95 (1)

and, after applying some standard manipulations of inequalities, we can
manipulate the � to the inside of the equality and the X� to the outside,
obtaining

Pr

�
X� � 1:96

�p
N
� � � X� + 1:96

�p
N

�
= :95 (2)

Equation 2 implies that, if we take X� and add and subtract the �crit-
ical distance� 1:96�=

p
N;we obtain an interval that contains the true �,

in the long run, 95% of the time.

3.1. Taking a Stroll with Mr. Mu

Even if you are not familiar with the manipulation of inequalities, there
is a way of seeing how Equation 2 follows from Equation 1. The �rst
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inequality states that there is a critical distance, 1:96�=
p
N . and X� is

within that distance of � 95% of the time, over repeated samples. Now
imagine that you had a friend named Mr. Mu, and you went for a stroll
with him. After a certain length of time, he turned to you and said, �You
know, about 95% of the time, you�ve been walking within 2 feet of me.�
You could, of course, reply that he has also been within 2 feet of you 95%
of the time. The point is, if X� is within a certain distance of � 95% of
the time, it must also be the case (because distances are symmetric) that
� is within the same distance of X� 95% of the time.

3.2. Constructing a Con�dence Interval

The con�dence interval for �, when � is known, is, for a 100(1 � �)%
con�dence level, of the form

X� � z�1��=2
�p
N

(3)

where z�is a critical value from the standard normal curve. For example,
z�:975 is equal to 1:96. At �rst this notation is somewhat di¢ cult to master.
When you are talking about a 95% con�dence interval, � is equal to :05,
and 1� �=2 is :975:

Example 3.1 (A Simple Con�dence Interval) Suppose you are in-
terested in the average height of Vanderbilt male undergraduates, but you
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only have the resources to sample about 64 men at random from the general
population. You obtain a random sample of size 64, and �nd that the sam-
ple mean is 70:6 inches. Suppose that the population standard deviation is
somehow known to be 2:5 inches. What is the 95% con�dence interval for
�?

Solution 3.1 Simply process the result of Equation 3. We have

70:6� 1:96 2:5p
64

or
70:6� :6125

We are 95% con�dent that the average height for the population of
interest is between 69:99 and 71:21 inches.

Remark 3.1 A con�dence interval provides an indication of precision of
estimation (narrower intervals indicate greater precision), while also indi-
cating the location of the parameter. Note that the width of the con�dence
interval is related inversely to the square root of N , i.e., one must quadru-
ple N to double the precision.
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4. Hypothesis Testing

Hypothesis testing logic was imported into psychology from the �hard sci-
ences,�and has dominated the landscape in behavioral statistics ever since.
Hypothesis testing is most appropriate in situations where a dichotomous
decision (pass-fail, infected-clean, buy-sell) needs to be made on the basis
of data in the face of uncertainty. Unfortunately, many situations in the
social sciences do not �t this mold. To see why, we need to investigate the
logic of hypothesis testing carefully.

4.1. Parameter Spaces and Sample Spaces

Suppose we are interested in a particular parameter, say a population mean
�. The parameter space 
 is the set of all possible values of the parameter.
Often this is modeled to be the entire real number line from �1 to +1.

4.2. Partitioning the Parameter Space

Generally, we perform statistical tests to ascertain whether the parame-
ter satis�es some restriction. The most common restriction is that it is a
particular value, or falls within some speci�ed range of values. This re-
striction is commonly stated as a statistical hypothesis, which con�nes the
parameter to a particular region of the parameter space.
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De�nition 4.1 (Statistical Hypothesis) A statistical hypothesis is a
statement delineating a region of the parameter space in which the para-
meter may be found.A statistical hypothesis partitions the parameter space.
Usually in our applications there will be two regions.

Hypotheses about � restrict it to a particular region of the parameter
space. Here are some examples:

� = 100

� < 100

60 � � � 70
A very common form of statistical inference pits two hypotheses about

a statistical parameter against each other. The goal of the statistical
decision process is to decide between the two hypotheses. One hypothesis,
labeledH0, is called the null hypothesis, and the other, labeledH1, is called
the alternative hypothesis. Usually, these two hypotheses are mutually
exclusive and exhaustive, i.e., they are opposites that, taken together,
exhaust all possibilities, so that one or the other must be true.
Often, in practice, the statistical null hypothesis is exactly the opposite

of what you believe, so your goal is to gather enough evidence to reject
it in favor of the alternative hypothesis. Such a situation is called Reject-
Support Testing, and is by far the most common form of statistical testing
in the behavioral sciences.
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On occasion, the situation is reversed � the null hypothesis is what
the experimenter believes, so accepting the null hypothesis supports the
experimenter�s theory. In such a case, the test is called Accept-Support
Testing. Some of the common conventions of behavioral statistics are
based on Reject-Support logic, and may be inappropriate or illogical when
Accept-Support testing is being performed.
We begin with an example of Reject-Support testing. Suppose you

wished to prove that a particular group of men has an above-average
height. The average height in the general population of men is known
to be 70 inches. You state the statistical null hypothesis as

H0 : � � 70

and the alternative hypothesis as

H1 : � > 70

In this case, you actually believe the alternative hypothesis. Since either
H0 or H1 (but not both) must be true, the falsity of H0 implies the truth
of H1 and vice-versa. The two hypotheses partition the number line from
�1 to +1 into two mutually exclusive and exhaustive regions, as shown
in Figure 2. (The arrow pointing to H0 indicates that the null hypothesis
region includes the value 70.)
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Figure 2: Partitioning the Parameter Space with Null and Alternative
Hypotheses

4.3. Partitioning the sample space

In the preceding example, we arrived at a pair of statistical hypotheses that
might be used to assess whether a particular group has an above-average
height. To evaluate these hypotheses about �, we seldom have the luxury
of examining all the members of the group of interest. Consequently,
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we must base our decision on a sample. Typically, we assume simple
random sampling from the population of interest, i.e., a sample of size N
is selected so that all members of the population have an equal probability
of being sampled. (In practice, of course, true random sampling is seldom
achieved.)Once the sample of size N is obtained, we calculate a statistic,
examine its value, and try to decide which of the two hypotheses, H0 orH1,
is more reasonable. The major problem is that the statistic, being based on
a �nite sample, provides an estimate of the parameter that almost certainly
is inaccurate to a degree. The amount by which the statistic is incorrect
is called sampling error, which varies randomly from sample to sample.
In any particular sample, you may experience relatively large or small
sampling error. An experimenter cannot control the luck of the draw, but
decision rules can be employed that control the long run probabilities of
making the wrong decision. To devise an e¤ective decision rule for deciding
between two hypotheses on the basis of a statistic, it is extremely useful
to have good information about the sampling distribution of the statistic.
Suppose a sample of size N = 25 is taken from a population with a normal
distribution, a mean of 70, and a standard deviation of 10. Based on
our preceding discussion, we can state that, over repeated samples, the
sample mean, X�, will have a distribution that is normal, with a mean of
70, and a standard deviation of 2. This fact can be exploited to create
a statistical decision rule for testing the null and alternative hypotheses
discussed above. The statistical decision rule declares, in advance, which
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values of the statistic X� will result in acceptance or rejection of the null
hypothesis.

4.4. A Raw Score Rejection Rule

The Sample Space of the statistic is the set of all possible values of the
statistic. Formally, we say that the decision rule partitions the sample space
of the statistic. For example, suppose we are trying to decide between the
hypotheses in the previous example on the basis of a sample mean X�
obtained from a sample of 25 observations, in a case where the population
is normal and the standard deviation is known to be 10. Our construction
of a decision rule is complicated by the fact that the statistic X� has
sampling error. If X� were a perfect indicator of �, our decision rule would
be the same as the diagram in Figure 2. That is, we would decide in favor
of H1 if we observed an X� greater than 70, otherwise we would retain H0.
However, because there is sampling error, any statistical decision rule we
construct will have leave open the possibility of decision errors. Typically,
this involves constructing a decision rule that is similar in appearance to
the diagram of the statistical hypotheses, but is �a little fuzzy�to allow
for sampling error. Suppose, for example, we decide on a one-sided or
�one-tailed�decision rule shown in Figure 2. With this rule, if a value of
X� is greater than or equal to 73:29, we decide in favor of H1, otherwise
we retain H0.
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Note that, so far, I haven�t described how I arrived at the decision rule
of Figure 3. The rule is based on a consideration of error rates.

Figure 3: A Statistical Decision Rule for the Hypotheses in Figure 2

4.5. Error Rates

Since there are two possible states of the world (H0 is either true or false)
and there are only two possible decisions, there are only 4 possible out-
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comes, shown in Table 1.

State of the World

Decision H0 True H0 False
Accept H0 Correct Acceptance (1� �) Type II Error (�)
Reject H0 Type I Error (�) Correct Rejection (1� �)

Table 1: 2� 2 Statistical Decision Table

4.5.1. Type I Error

A Type I error is an incorrect rejection of H0, and occurs with probability
�. The formal de�nition of a Type I error remains the same whether one
is performing Accept-Support or Reject-Support testing, but the implica-
tions of a Type I error are di¤erent in the two situations. In Reject-Support
testing, a Type I error represents a false positive for the experimenter�s
belief. Mindful of this, �society�in the person of journal editors and other
authority �gures requires a statistical test to be designed so that �, the
probability of a Type I error, is small. In Accept-Support testing, however,
a Type I error is an incorrect rejection of the experimenter�s belief.
In the previous example, the decision rule was �xed at a value of 73:29.

Values of X� above this cut-o¤ resulted in rejection of H0: For a particular
decision rule, we can immediately compute bounds for �, the probability
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of a Type I error, under the supposition that H0 is true. For example,
consider the decision rule diagrammed in Figure 3. If the null hypothesis
is true, the sample mean X� will have a normal distribution with a mean
no greater than 70, and a standard deviation of �=

p
N = 10=

p
25 = 2.

The mean of the sampling distribution may be less than 70 and the H0 will
still be true, but in that case it is easy to see that the probability of a Type
I error will be lower than when � = 70. So, to compute an upper bound
for � with the decision rule shown in Figure 3, we plot the distribution
of X�, and compute the probability of obtaining a result in the rejection
region. The situation is shown in Figure 4.
To compute �, we simply calculate the probability of obtaining a value

higher than 73:29 in a Normal(70,2) distribution. This can be calculated
easily by converting 73:29 to its Z-score equivalent, i.e.,

Z =
73:29� 70

2
= 1:645

The probability above 1:645 in a standard normal distribution is :05.
Of course, the value 73:29, which yields the familiar :05 value for �, did
not arrive out of thin air. Rather, it was calculated, deliberately, to yield
the value :05. Speci�cally, we know that, for the one-sided test to yield an
� value of :05, the area under the normal curve to the left of the decision
point must be :95, and the area to its right must be :05. Scanning down the
normal curve table, we �nd that the Z-score value for the decision criterion
must be 1:645. Next, we must convert this value to a point in the sampling
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distribution of the sample mean, which, under the null hypothesis, has a
mean of 70 and a standard deviation of 2. Since we must have

X� � 70
2

= 1:645

it trivially follows that, in this case, the critical value of X�separating the
H0 and H1 decision regions must be

X� = (2)(1:645) + 70 = 73:29

Note that this calculation is tedious, and that the raw score rejection
point will generally change with each new situation. Fortunately, there is
a way around this tedium.

4.5.2. Type II Error

A Type II error is an incorrect acceptance of H0;and occurs with proba-
bility �. In Reject-Support testing, a Type II error represents an incorrect
failure to support the experimenter�s belief, i.e., a false negative for the
experimenter�s belief. A Type II error represents (in Reject-Support test-
ing) a potential debacle for the experimenter � the experimenter�s belief
is correct, but the statistical test fails to detect this! It is therefore impor-
tant for the Reject-Support tester to take steps to assure that � is small.
Once a decision rule is set, � may be calculated by presupposing an e¤ect
size, i.e., an amount by which the null hypothesis is false.
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4.6. Statistical Power

Statistical Power is de�ned as 1 � �. The amount by which the null
hypothesis is false is called an experimental e¤ect. One can think of an
experimental e¤ect as a signal, and statistical power as the ability to detect
the signal. For example, earlier we decided on a rejection rule that controls
� at or below :05. Suppose that the null hypothesis is false. Rather than
having a value of 70, � is actually 75. What will the statistical power be
in this situation?
To compute power, one must draw the actual distribution ofX� and see

what percentage of the area falls in the rejection rejion. From the general
sampling distribution of the sample mean we can calcualte that with � =
75, � = 10, and N = 25, the sample mean will have a Normal(75,2)
distribution. So the power of the test is the probability of obtaining a
rejection with this distribution. This is the probability of obtaining a
value greater than or equal to 73.29 in this distribution, as diagrammed in
Figure 5.
To compute the area, we convert 73.29 to a Z-score, obtaining Z =

(73:29 � 75)=2 = �:855. Consulting a standard normal curve table, we
�nd that the area above �:855 is approximately :804.
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4.6.1. Power vs. Precision

Precision of estimation is re�ected in the narrowness of a sampling distri-
bution. In general, the greater the precision of estimation, the greater the
statistical power, because of the �sharpening of vision�that occurs with
greater precision. However, if the experimental e¤ect is very large, even a
low precision experiment may have high power � so power and precision
are not the same thing.
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Figure 4: Calculating � for a simple decision rule
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Figure 5: Calculating power when � = 75
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5. Test Statistics and Standardized Rejec-
tion Rules

In the preceding section, we determined that, with a sample size of 25, the
power for our one-sided test to detect a false null hypothesis when � = 75
is about :80. We calculated the power by

� Calculating a statistical decision rule (and associated rejection region
for H0) for the statistic X�;

� Drawing the sampling distribution of X� under the true state of the
world, i.e., when � = 75;

� Calculating the area of this sampling distribution that falls in the
rejection region.

This method of power calculation for the test on a single mean is the
one taught to most undergraduates in the social sciences. Ironically, it is
neither e¢ cient nor realistic. In practice, one seldom calculates a single
power value. Rather, one calculates power for a range of sample sizes, and
for a range of possible values of �, for several reasons. First, if one actually
knew �, there would be little point performing the experiment, so a range
of possible values of � may need to be considered. Second, an initial
power calculation performed by hand often turns out to be disappointing.
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Suppose, for example, you felt that a power of :95 was necessary in order
to undertake a particular experiment, and you were trying to determine,
in advance, the sample size N required to obtain that level of power when
the null hypothesis is false by 5 points (i.e., when � is at least 75). The
calculation we performed in the preceding section would be disappointing
to you, and your next question, after determining that power is �only�
.80, might well be �How large an N do I need to have a power of :95 or
greater?�
The method of calculation described in the preceding section is rather

ine¢ cient for answering this question. If you keep your (algebraic) wits
about you, you might stumble on the realization that you can solve for the
minimum N required to yield a desired power by solving a system of two
simultaneous equations, an approach taught in a number of textbooks. The
reason the answer is not simpler is that, for each N , the rejection region for
X� changes, and the width of the distribution of X� also changes. The fact
that two important determinants of power are changing simultaneously as
a function of N adds to the complexity of the problem.
However, there is a much simpler approach to power calculation in this

situation that, surprisingly, is seldom taught in textbooks. Recall some-
thing that is almost inevitably taught, namely that, rather than calculating
a new rejection value for X� for each new situation, there is an easier way,
based on the use of a �standardized�version of X�. Suppose, for example,
you wish to perform the single-sided test with � = :05. Simply employ the
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following decision rule for testing the hypothesis that � � �0 against the
alternative that � > �0. First, compute the �test statistic�

Z =
�� �0
�=
p
N

Then adopt the decision rule to reject H0 in favor of H1 whenever the
value of Z reaches the 95th percentile in the standard normal curve, i.e.,
whenever Z � 1:645. . Referring back to the numerical values used in the
speci�c example in the previous section, you can quickly determine that
Z will reach 1:645 if an only if X� reaches 73:29, so the two decision rules
are equivalent. The advantage of the standardized approach is that, for
a single-sided hypothesis H0 : � � �0 with an � of :05, the Z-statistic
will always have the same rejection point (1:645). So if �0 changes, or �
changes, or N changes, the rejection rule remains the same.

5.1. Standardized E¤ect Size, Power, and Sample
Size

It is somewhat ironic that although most textbooks are quick to recognize
the value of the �standardized test statistic�approach to streamlining hy-
pothesis testing, they fail to recognize the even more signi�cant advantages
of this approach in power calculation and sample size estimation. We will
now investigate the extension of the standardized test statistic approach
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to power calculation, and, in the process, discover some important general
principles that hold for many di¤erent types of power calculations. First,
we recall a key result regarding the Z-statistic.

Proposition 5.1 Suppose a sample of N observations is taken from a
normal distribution with mean � and standard deviation �, and the test
statistic

Z =
X� � �0
�=
p
N

is calculated. Then Z will have a distribution that is Normal(
p
N Es, 1),

where
Es =

�� �0
�

The parameterEs, often referred to as a measure of �standardized e¤ect
size,�may be thought of as the amount by which the null hypothesis is
wrong, expressed in standard deviation units. Return again to our previous
power calculation. We contemplating a test of the null hypothesis that �
is less than or equal to 70, in a case where the true � is 75, sample size is
N = 25, and the population standard deviation is � = 10. With this single-
sided signi�cance rejection region, the decision rule for the Z statistic is
to reject H0 for any value of the Z-statistic greater than or equal to the
95th percentile of its distribution when � = �0. Note that, if � = �0, then
Es = 0, and the Z-statistic has a distribution that is Normal(0,1). So the
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critical value for our decision rule is at 1.645. This rule is diagrammed in
Figure 6 n�gureref{StandardizedDecisionRule}.

Figure 6: A standardized decision rule

To calculate power for the case where � = 75, we calculate the distrib-
ution of the Z-statistic, superimpose it on the decision rule, and calculate
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the probability of a rejection. In this case, Es = (75 � 70)=10 = :5, and,
from Proposition 5.1, we �nd that the Z-statistic has a distribution that
is Normal(

p
25:5, 1), or Normal(2:5, 1). As shown in Figure 7, the power

of the test is the probability of obtaining a value greater than 1.645 in
a normal distribution with a mean of 2.5 and a standard deviation of 1.
To calculate this probability, we compute the Z-score equivalent of 1:645.

Figure 7: Power calculation using a standardized rejection rule
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This is (1:645� 2:5)=1 = �:855. Note how the calculation is made easier
by the fact that the standard deviation of the test statistic is 1, so there is
no necessity to divide by it. The area to the right of �:855 in the standard
normal distribution is :804.
We have reviewed two techniques for performing the same power calcu-

lation. The second method turns out to be substantially simpler, although
the magnitude of the advantage may not yet be apparent. We now inves-
tigate how the standardized approach allows one to

� Calculate power directly from the normal curve table;

� Grasp much more easily the importance of various in�uences on
power, and

� Calculate sample size (N) required to yield a given level of power
without solving a simultaneous equation system.

To begin with, recall the �nal steps we took in solving for power. Hav-
ing computed our rejection point (1:645), and the mean of the sampling
distribution of the Z-statistic (2:5), we computed the area to the right of
1:645 in a normal distribution with a mean of 2:5 and a standard devia-
tion of 1. Reducing the operation to its essentials, we subtracted 2:5 from
1:645 (obtaining �:855) and computed the area to the right of �:855 in
the standard normal distribution.
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At this point, the typical reader might still be a few steps short of
�seeing the forest for the trees.�It is quite common in statistics for some
exceedingly simple realities to be concealed in a blizzard of formulas, but
it is also the case that casting an operation in the proper mathematical
notation can sometimes reveal some important details. First, suppose we
call the rejection point R, and the mean of the sampling distribution M .
Computing power involves simply computing the area to the right of R�M
in the standard normal distribution. Since normal curve tables are more
likely to give the cumulative probability, it might be useful to alter the
procedure slightly. Recalling that the area to the right of a value x in a
standard normal distribution is equal to the area to the left of �x in the
same distribution, we can also calculate power as the area to the left of
M � R. In other words, all we need to do is compute M � R, and look
up its cumulative probability on the standard normal curve table. So the
standard normal curve table is also a power table for this test. Notice that
this one table can be used to solve for power for all values of �, �, and N .
To make the discussion more succinct, let�s proceed to develop some

notation for talking about the standard normal curve table. Z-score values
are listed on the left side of the table, cumulative probabilities on the right.
We will refer to a Z-score value as z, the cumulative probability as � (z).
If we graph � (z), we see an S-shaped curve as shown in Figure 8.
Note that � () is a monotonic, strictly increasing function that is in-

vertible, i.e., each value of � (z)$ corresponds to a unique value of z. We
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denote the inverse function ��1 (p). Some examples will help make the
notions of the standard normal CDF and its inverse more concrete. The
standard normal curve CDF is tabled in Glass and Hopkins. To compute
� (z), one scans down the left column labeled z, �nds the value, then scans
over to the value of � (z) (�area below z) in the same row. So, for exam-
ple, if one were evaluating � (1:0), one would scan down until the value
1:0 is encountered in the z column, then scan over in the same row to the
value of � (1:0), which is :8413. To compute ��1 (p), one scans down the
�area below z�column until the value closest to p is found, then moves
to the left column in the same row to �nd the value of z. For example,
��1 (:9772) = 2:00.
Armed with this notation, let us now return to our standardized ap-

proach to power calculation. We decided that the power of the test could
be described as the area to the left of the quantity (M�R) in the standard
normal curve, whereM is the mean of the sampling distribution ofX�, and
R is the rejection point used for the Z-statistic. Using our new notation, we
can write that same quantity as Power = �(M �R) = �

�p
NEs �R

�
.

Since the � () function has an inverse, ��1 (� (x)) = x, and we can
actually solve this equation to determine the minimum N required to pro-
duce a given power. Speci�cally, let P be the required power.Then

P = �
�p
NEs �R

�
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so
��1 (P ) =

p
NEs �R

and

N =

�
��1 (P ) +R

Es

�2
Usually N in the above will not be an integer, and to exceed the re-

quired power, you will need to use the smallest integer that is not less than
N . This value is called ceiling(N). Moreover, in a single-sided (1-tailed)
test, we can write

R = ��1(1� �)
So we can make the resulting expression look really complicated! For

a 1-sided test such as the one currently under consideration,

N = ceiling

"�
��1 (P ) + ��1 (1� �)

Es

�2#

Example 5.1 Suppose that the null hypothesis is that � � 70, but the true
state of the world is that � = 75, while � = 10. Find the minimum sample
size needed to achieve a statistical power of :90 when Type I error is set at
� = :05.

Solution 5.1 Scanning down the normal curve table we �nd that ��1 (:90) =
1:283, and ��1 (1� :05) = ��1 (:95) = 1:645. The standardized e¤ect size
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is (�� �0)=� = :5. So the minimum N is

N = ceiling

"�
1:282 + 1:645

:5

�2#
= ceiling [5:854]2

= ceiling[34:27] = 35
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Figure 8: Standard Normal Curve Cumulative Probability Function
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6. 1-tailed and 2-tailed Tests

So far we have examined a situation where the null hypothesis would be
rejected only on the basis of evidence that the parameter is on one side of
the acceptance region. In some situations, however, the rejection region is
two sided. The classic case is the null hypothesis of the form � = �0. A
value of X� far above �0 or far below �0 should result in rejection of the
null hypothesis. Consequently, there will be two rejection regions. Such a
hypothesis test is commonly called �two-sided�or �two-tailed.�
Commonly, two-tailed tests have symmetric rejection regions in the

sense that half the � is assigned to each tail. One consequence of having a
two-tailed test as opposed to a one-tailed test is that the rejection points
will be di¤erent. Consider a test with � = :05. In the 1-tailed version,
the rejection point R for the Z-statistic is either 1:645 or �1:645, but
not both. In the 2-tailed version, the rejection points are both �1:96 and
+1:96. The bottom line is that if the null hypothesis is false, and if you
run a 1-tailed test with the rejection region on the correct side, you will
have greater power, and a smaller required N , because R will be less.
We can revise our formula for required N to take into account T , the

number of tails, as follows

N = ceiling

"�
��1 (P ) + ��1 (1� �=T )

Es

�2#
(4)
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The equation for power becomes

P = �
hp
NEs � ��1 (1� �=T )

i
(5)

= �

�p
N
�� �0
�

� ��1 (1� �=T )
�

(6)
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7. In�uences on Power

By examining Equations 4 and 6 we can see more clearly the factors that
in�uence power, and, in some cases, allow us to manipulate it. Since both
� () and ��1 () are strictly increasing in their arguments, it follows that
anything that increases the argument within brackets in Equation 4 will
increase the required sample size, and anything that increases the argu-
ment within brackets in Equation 6 will increase power. We will discuss
these in class

1. Sample Size (N)

2. E¤ect Size (�� �0)

3. Variation (�)

4. Type I Error Rate (�)

5. Number of Tails in the Rejection Region (T )
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